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KEY PO INT S

•Microlyse is noninferior
to rh-tPA when AIS is
driven by fibrin-rich
thrombi, but superior in
AIS driven by platelet-
rich thrombi.

•VWF-targeted
plasminogen activation
overcomes the intrinsic
resistance of platelet-
rich thrombi against
rh-tPA–mediated
thrombolysis.
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Recombinant human tissue plasminogen activator (rh-tPA) is an important thrombolytic
agent for treatment of acute ischemic stroke. It requires fibrin binding for plasminogen
activation. In contrast, Microlyse, a novel thrombolytic agent, requires von Willebrand
factor (VWF) binding for plasminogen activation. We compared rh-tPA with Microlyse,
administered 20 minutes after inducing thrombosis, in 2 randomized blinded acute
ischemic stroke mouse models. Thrombosis was induced in the middle cerebral artery with
different experimental triggers. Where thrombin infusion generates fibrin-rich thrombi,
topical FeCl3 application generates platelet-rich thrombi. In the fibrin-rich model, both
rh-tPA and Microlyse increased cortical reperfusion (determined by laser speckle imaging)
10 minutes after therapy administration (35.8 ± 17.1%; P = .001 39.3 ± 13.1%; P < .0001;
15.6 ± 7.5%, respectively, vs vehicle). In addition, both thrombolytic agents reduced
cerebral lesion volume (determined by magnetic resonance imaging) after 24 hours
(18.9 ± 11.2 mm3; P = .033; 16.1 ± 13.9 mm3; P = .018; 26.6 ± 5.6 mm3, respectively, vs
vehicle). In the platelet-rich model, neither rh-tPA nor Microlyse increased cortical
reperfusion 10 minutes after therapy (7.6 ± 8.8%; P = .216; 16.3 ± 13.9%; P = .151; 10.1 ± 7.9%, respectively, vs
vehicle). However, Microlyse, but not rh-tPA, decreased cerebral lesion volumes (13.9 ± 11.4 mm3; P < .001; 23.6 ±
11.1 mm3; P = .188; 30.3 ± 10.9 mm3, respectively, vs vehicle). These findings support broad applicability of Microlyse
in ischemic stroke, irrespective of the thrombus composition.
Introduction
IV administration of recombinant human tissue plasminogen
activator (rh-tPA [alteplase]) is the only approved thrombo-
lytic treatment for acute ischemic stroke (AIS). Nonetheless,
its efficacy, based on survival in the absence of disability, is
estimated at less than 35%, with a persistent risk for intra-
cranial bleeding of 7%.1-6 tPA is an endogenous protease
that requires binding to fibrin to activate plasminogen into
plasmin, which then actively degrades fibrin. Plasmin can also
cleave von Willebrand factor (VWF),7 but none of the known
plasminogen activators can activate plasminogen in a VWF-
dependent manner.

The limited efficacy of rh-tPA to prevent ischemic injury is
also known as “rh-tPA resistance.”8-10 This phenomenon
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could be explained by new insights in clot architecture that
challenge the assumption that fibrin is always available for
rh-tPA binding in thrombi that cause AIS. First, experi-
mental models for thrombosis after vascular injury in vivo
have shown that fibrin forms in the thrombus core, near the
site of injury, whereas the shell, reaching into the vessel
lumen, is fibrin poor.11,12 In this context, fibrin is not
accessible to intravascular thrombolytic agents. Second,
histopathological examination of thrombectomized human
thrombi (by definition excluding microvascular thrombi)
showed large variability in the fibrin content.8,13,14

Combined, these findings suggest that targeting nonfibrin
components may hold value in the treatment of AIS.8

VWF is a critical component in thrombus formation.6

Indeed, degrading VWF by administration of
ADAMTS13, at either supraphysiological levels15 or via a
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Figure 1. Fibrin-rich thrombosis model (thrombin induced; rh-tPA sensitive). (A) AIS was induced by intravascular injection of thrombin into the MCA. Clot formation was
considered to be stable when blood flow in the MCA was zero for 10 minutes. Cortical perfusion over the entire dorsal brain area was measured via speckle imaging between
T = 10 minutes and T = 70 minutes. Treatment was given at T = 20 minutes as a 10% bolus and 90% infusion over 40 minutes. MRI was performed after 24 hours to assess lesion
volumes (T2 weighted), possible hemorrhage (T2*-weighted), and MCA recanalization (MR angiography). (B) Bar graph (mean ± standard deviation) displaying the percentage
of reperfusion of the ischemic core, calculated as difference between levels of perfusion 10 minutes after treatment (T = 70 minutes) and 10 minutes before treatment (T = 10
minutes). From individual mice indicated as red circles (reflecting median values), images are presented hereafter. (C) Representative laser speckle flow images (from subjects
indicated at red circles in panel B) before and after treatment from a single mouse per group. Reperfusion is visible when the blue hemisphere (bottom half of each image)
before treatment is turning green, yellow, or red after treatment. The mean CBF levels in the ischemic core (expressed as percent of the unaffected hemisphere) are shown
below the images. (D) Bar graph (mean ± standard deviation) displaying lesion volumes, calculated from a T2-weighted MRI. From individual mice indicated as red circles
(reflecting median values), images are presented hereafter. (E) Representative T2-weighted images of coronal mouse brain slices displaying the hyperintense lesion area in a
single mouse per group (indicated as red circles in D). Lesion volume values are shown below the images. Asterisks indicate significance levels as measured by Mann-Whitney
U tests: *P < .05; **P < .01; ***P < .001. CBF, cerebral blood flow.
gain-of-function mutant,16 decreased cerebral lesion vol-
umes in preclinical AIS models. However, ADAMTS13
cannot degrade fibrin,17 limiting its applicability to VWF-
dependent thrombi.15
MICROLYSE IN ISCHEMIC STROKE MODELS
In current clinical practice, the clot composition is unknown
before treatment. Consequently, the availability of fibrin that
determines rh-tPA efficacy is not guaranteed. In an attempt to
improve the efficacy of thrombolytic therapy, we recently
29 DECEMBER 2022 | VOLUME 140, NUMBER 26 2845
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Figure 2. Platelet-rich thrombosis model (FeCl3 induced; rh-tPA resistant). (A) AIS was induced by topical application of FeCl3 on the MCA. (B) Bar graph (mean ± standard
deviation) displaying the percentage of reperfusion of the ischemic core, calculated as difference between levels of perfusion 10 minutes after treatment (T = 70 minutes) and
10 minutes before treatment (T = 10 minutes). From individual mice indicated as red circles, images are presented hereafter. (C) Representative laser speckle flow images (from
subjects indicated at red circles in panel B) before and after treatment from a single mouse per group. Reperfusion seems to be absent as the blue and green hemisphere
(bottom half of each image) before treatment remains blue and green after treatment. The mean CBF levels in the ischemic core (expressed as percent of the unaffected
hemisphere) are shown below the images. (D) Bar graph (mean ± standard deviation) displaying lesion volumes, calculated from a T2-weighted MRI. From individual mice
indicated as red circles (reflecting median values), images are presented hereafter. (E) Representative T2-weighted images of coronal mouse brain slices displaying the
hyperintense lesion area in a single mouse with median lesion volume per group (indicated as red circles in panel D). Lesion volume values are shown below the images.
Asterisks indicate significance levels as measured by Mann-Whitney U tests: *P < .05; **P < .01; ***P < .001. CBF, cerebral blood flow.
developed Microlyse. Microlyse is a single polypeptide con-
sisting of a VWF-targeting nanobody and the catalytic domain
of urokinase plasminogen activator. Upon binding VWF,
Microlyse initiates localized plasminogen activation.18 We
demonstrated its efficacy in a preclinical model for thrombotic
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thrombocytopenic purpura without increasing bleeding risk.
Thrombotic thrombocytopenic purpura is a thrombotic micro-
angiopathy with a dominant role for VWF and a minor, if any,
role for fibrin. Because plasmin can degrade both fibrin as well
as VWF, we here set out to compare the efficacy of Microlyse
van MOORSEL et al.



and rh-tPA in both a fibrin- and a platelet-rich mouse model of
AIS. Based on the ability to decreased ischemic lesion volumes,
it was previously shown that the fibrin-rich model is rh-tPA
sensitive, whereas the platelet-rich model is rh-tPA resistant
but ADAMTS13 sensitive (ie, VWF dependent).15,19

Study design
The experimental design is shown in Figures 1A and 2A, and an
expanded description of the Methods is supplied in the sup-
plemental Data (available on the Blood website).

Thrombosis was induced at the M2 segment of the right middle
cerebral artery (MCA) of OF1 mice under anesthesia. Experiments
were performed in a randomized and blinded manner. Fibrin-rich
thrombosis19 (n = 12-13 mice per group) was induced by the
luminal injection of 1 UI murine thrombin (Diagnostica Stago,
Asnières sur Seine, France).20 Platelet-rich thrombosis (n = 15-16
mice per group) was induced by the topical application of FeCl3
(20%, 4 minutes).10,21 Laser Doppler flowmetry was started to
confirm full MCA segment occlusion. At T = 10 minutes, baseline
cortical perfusionwas determined via laser speckle imaging (FLPI-2,
Moor Instruments, Axminster, United Kingdom). Between T = 20
minutes and T = 60 minutes, vehicle, 0.8 mg/kg Microlyse, or 10
mg/kg rh-tPA was administered by bolus injection (10% of total
dose) and infusion via the tail vein (90% of total dose). Doses were
selected based on dose range efficacy studies in a VWF-driven
model for thrombotic microangiopathy.18 For rh-tPA, the highest
effective dose without hemorrhagic transformation in mice was
selected.22 At T = 70 minutes, cortical perfusion was remeasured.
Reperfusion data indicate the difference in perfusion before and
after therapy. At T = 24 hours, mice were anesthetized and sub-
jected to magnetic resonance imaging examination as described23

to measure cerebral lesion volume (T2-weighted imaging), to
detect cerebral hemorrhage (T2*-weighted imaging), and to assess
MCA recanalization (time-of-flight angiography). Lesion volume,
expressed in cubic millimeters, was measured from the cortical
areas displaying hyperintensity on 20 two-dimensional images.
Cerebral hemorrhage per animal, identified as hypointensity, was
scored as present versus absent. MCA recanalization was scored in
a blindedmanner as full recanalization (full MCAwas visible), partial
recanalization (MCAwaspoorly visible, or sectionsweremissing), or
no recanalization (distal part invisible). Data are presented as
mean ± standard deviation and treatment groups were compared
with vehicle using the Wilcoxon Mann-Whitney U test. Differences
were considered significant when P was <.05.

Results and discussion
In the fibrin-rich AIS model, spontaneous reperfusion (T = 70
minutes) in vehicle-treated mice was 15.6 ± 7.5% (Figure 1B).
Reperfusion levels were higher after rh-tPA or Microlyse admin-
istration (35.8 ± 17.1%; P = .001; 39.3 ± 13.1%; P < .0001,
respectively) (Figure 1B-C). After 24 hours, all mice showed full
MCA recanalization. In addition, lesion volumeswere smaller after
administration of rh-tPA or Microlyse (18.9 ± 11.2 mm3; P = .033;
16.1 ± 13.9 mm3; P = .018; 26.6 ± 5.6 mm3, respectively, vs
vehicle) (Figure 1D-E). Intracerebral hemorrhage was detected in
1 mouse (rh-tPA group).

In the platelet-rich AIS model, spontaneous reperfusion (T = 70
minutes) in vehicle-treated mice was 10.1 ± 7.9% (Figure 2B).
Comparable reperfusion was measured after rh-tPA or Microlyse
MICROLYSE IN ISCHEMIC STROKE MODELS
administration (7.6 ± 8.8%; P = .216; 16.3 ± 13.9%; P = .151,
respectively) (Figure 2B-C). After 24 hours, 25% of the vehicle-
treated mice showed MCA recanalization, suggesting that this
model results inmore severe thrombotic occlusion than is seen in
the fibrin-rich model. By comparison, MCA recanalization was
observed in 62% of Microlyse-treated mice and 92% of rh-tPA-
treated mice (P < .001; P = .073, respectively, vs vehicle). How-
ever, lesion volumes were only smaller after administration of
Microlyse, but not after rh-tPA administration (13.9 ± 11.4 mm3;
P < .001; 23.6 ± 11.1 mm3; P = .188; 30.3 ± 10.9 mm3, respec-
tively, vs vehicle) (Figure 2D-E). No intracerebral hemorrhage
was detected with either treatment in this model. The observed
variation in reperfusion and lesion volumes, as well as the
observation that individual mice receiving vehicle have better
outcomes than mice receiving thrombolytic therapy, is in line
with previous studies in the field.10,15,16,20

The presence and accessibility of fibrin are critical determinants in
the efficacy of rh-tPA in mouse models for stroke.13,19 In contrast,
the efficacy of Microlyse is critically dependent on VWF binding.18

Indeed, rh-tPA increased reperfusion (T = 70 minutes) and
decreased cerebral lesion volumes (T = 24 hours) in a fibrin-rich
AIS model. The same holds true for Microlyse, supporting histo-
pathological findings that VWF is present in all thrombi (average
30%; minimally 5%),8 even when these are fibrin rich. In sharp
contrast, in a platelet-rich AIS model, neither agent increased early
reperfusion (T = 70 minutes). This finding suggests either that
thrombus formation is still ongoing between the moment of
therapy administration and the time of perfusion measurements
(T = 70 minutes) or, alternatively, that these thrombi are more
robust than those induced via thrombin. At T = 24 hours after AIS
induction, we observed 2 seemingly contradictive results. First,
although Microlyse did not improve reperfusion at T = 70 minutes,
it decreased lesion volumes (T = 24 hours) nonetheless. This
finding suggests that Microlyse acts in the time frame in between
both measurements.24 Second, rh-tPA showed better MCA
recanalization (T = 24 hours) than Microlyse (92% vs 62%,
respectively), but was not associated with a decreased lesion
volume. This either suggest that Microlyse triggers (partial) MCA
recanalization earlier than rh-tPA, or that Microlyse, but not rh-tPA,
removes secondary distal microthrombi. Future studies will have
to examine the performance of Microlyse in dose-escalation
effects and thrombolysis-related bleeding in models of hemor-
rhagic transformation.25-27 Altogether, Microlyse’s ability to
degrade both tPA-sensitive and tPA-resistant thrombi supports its
further development as promising thrombolytic treatment for AIS.
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